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Sampling

Sampling forms the basis of digital signals we encounter everyday in our lives.

For example, an audio signal played back from a compact disc is a signal that has
been captured and recorded at discrete time instants. When we look at the
amplitude values stored on the disc, we only see values taken at equally spaced
time instants (at a rate of 44,100 times per second) with missing amplitude values
between these instants. This is perfectly fine since all the information contained in
the original audio signal in the studio can be accounted for in these samples.

An image captured by a digital camera is stored in the form of a dense rectangular
grid of colored dots (known as pixels). When printed and viewed from an
appropriate distance, we cannot tell the individual pixels apart. Similarly, a movie
stored on a video cassette or a disc is stored in the form of consecutive snapshots,
taken at equal time intervals. If enough snapshots are taken from the scene and are
played back in sequence with the right timing, we perceive motion.




Sampling
Sampling concept

Sampling: Periodically measuring the amplitude of a continuous-time signal and
constructing a discrete-time signal with the measurements.

z, (t) t =nT, z[n]

J S~ mTﬂ hm, et
\/ [

z[n| = 24 (1) = 24 (nT%)

t=nT,

n: Integer, Ts: Sampling interval/period

1
fs = T : Sampling rate/frequency

s




Sampling

Sampling the room temperature

Time 3:30 8:40 8:50 9:00 9:10 9:20 9:30 9.40
Temp. (OC) 22.4 22.5 22.8 21.6 21.7 21.7 21.9 22.2
Index n 0 1 2 3 4 5 6 7

z[n] = {22.4, 22.5, 22.8, 21.6, 21.7, 21.7, 21.9, 22.2, ...}
1

n—>0

@ Do measurements taken 10 minutes apart provide enough information about the
variations in temperature?

@ Are we confident that no significant temperature variations occur between
consecutive measurements?

@ If yes, then could we have waited for 15 minutes between measurements instead

of 10 minutes?




.

Impulse sampling

Sampling \

AN
\/ it

"0
N lm
/ ®_}m’f mhﬁ;\u/ Friit




Sampling

Periodic impulse train

EFS representation:

o0
p(t) = Z Ck elhwst
k=00
Coefficients:
1
cp = — allt

g

p(t)= > &(t—nTy)

n=——0oo
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Sampling

Periodic impulse train

p(t)
o0
0 O O CEDIRITES
. T, t nT e
- =
| |
| T, |
EFS representation:
o0
p(t) = Z Ckejkwst
E— oo Xs (w) = Z Xa (w — kws)
k_
Coefficients: =
R K= 3 Ktk
Ts k=00




Sampling

The spectrum of the impulse-sampled signal is obtained by adding
frequency-shifted versions of the spectrum of the original signal and then
scaling the sum by 1/Ts. The terms of the summation in Eqn. (6.12) are
shifted by all integer multiples of the sampling rate ws.

The Fourier transform of the impulse-sampled signal is related to the Fourier transform of
the original signal by

1 o0
X, (w) =~ Y X (w— kw) (6.12)

k=—c

This relationship can also be written using frequencies in Hertz as

X (== 3 Xalf—kf) (6.13)




Sampling

Spectral relationships in impulse sampling (Case 1)

o0 o0

2o()= > ea(nTy)é(t—nTy) = Xs(w):% 5" Ke(w - hws)

n—-—oo k=00

X, (w)

T “max

Ws Z 2 Wmax




Sampling

Spectral relationships in impulse sampling (Case 2)

O

2o (t) = Z 2o (nTs) 6 (t — nTs)

=00

= =

Xs(w)

s

Xg(w
" )

—Wmax “max

O

Z Xao (w — kws)

k= —oc0

wWs < 2Wmax




Sampling

Importance of wq

9 If ws < 2wmax, sections of the spectrum X (w) overlap with each other.

9 If ws > 2 wmax, sections of X (w) do not overlap.

Conclusion

For the signal z, () to be recoverable from its
impulse sampled version zs (¢) we need

Ws Z 2 Wmax

or, equivalently

fS 22fmax




Sampling
Interactive demo: smp demol.m

Experiment by changing the sampling rate fs and the bandwidth frax.
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Sampling

Example 6.1

Impulse-sampling a right-sided exponential

Consider a right-sided exponential signal

This signal is to be impulse sampled. Determine and graph the spectrum of the
impulse sampled signal zs (¢) for sampling rates fs = 200 Hz, fs = 400 Hz and
fs = 600 Hz.

Example 4.15

Fourier transform of a right-sided exponential signal

Determine the Fourier transform of the right-sided exponential signal

with a > 0.

Solution:

X = [Tese s [T g L
0 Jo a+jw




Sampling

Example 6.1

Impulse-sampling a right-sided exponential

Consider a right-sided exponential signal

This signal is to be impulse sampled. Determine and graph the spectrum of the
impulse sampled signal zs (¢) for sampling rates fs = 200 Hz, fs = 400 Hz and
fs = 600 Hz.

>

Solution: Using the techniques developed in Chapter 4, the frequency spectrum of the signal
Lg () is
1

Xa(f)zm

which is graphed in Fig. 6.6(a).

X ()
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Sampling

Example 6.1

Impulse-sampling a right-sided exponential

Consider a right-sided exponential signal

This signal is to be impulse sampled. Determine and graph the spectrum of the
impulse sampled signal z; (¢) for sampling rates fs = 200 Hz, fs = 400 Hz and
f = 600 Hz.

Solution:
1

Xa () = 150 T ionf

e8]

1
zs (t) = Z e 100 5 (t — nTy) = Xs(f) = ] _ e 100Ts o j2nfTs

n=—0




Sampling

Example 6.1. (continued)

fs = 200 Hz

fs = 400 Hz

—600 =400 =200




ampling

Interactive demo: smp demo2.m

Experiment by changing the sampling rate fs.
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Sampling

Nyquist sampling criterion

() Xo(1)
AT,

/.\ Vs j‘ fs >2fmax

I /. T a1 T 2 Y

71‘<7f:l|s\x 71‘»*\}"1115\.& fp* .F:Lm\ f.“l‘fm\x
X (1)

(b)

f fS:2frnax

(c)

f fs < 2 fmax

N _2}: < _j}: T | \T f:. ¢ 2}{\

—fs+ finax




Sampling

For the impulse-sampled signal to form an accurate representation of the
original signal, the sampling rate must be at least twice the highest
frequency in the spectrum of the original signal. This is known as the
Nyquist sampling criterion. It was named after Harry Nyquist (1889-1976)
who first introduced the idea in his work on telegraph transmission. Later it
was formally proven by his colleague Claude Shannon (1916-2001) in his
work that formed the foundations of information theory.

The signal is processed through an anfi-aliasing filter before it is sampled,
effectively removing all frequencies that are greater than half the sampling
rate.




Sampling

Use of anti-aliasing filter

9 In practical implementations, the sampling rate fs is fixed by hardware
constraints.

9@ The highest frequency fmax is not always known a priori.

9@ An anti-aliasing filter is used to avoid aliasing.

Analog Impulse-sampled
signal signal

Anti-aliasing
filter

H (w) / p(t)
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Sampling

Periodic pulse train

p(t)

dT,
Ll oo 4 T
P | — nT,
o= 5 05
=00
‘ t
| |
[ T, [
EFS representation:
oo _ Spectrum of naturally sampled signal
B(t)= ) cpelt
k=—o00

X (w) =d Z sinc (kd) Xg (w — kws)

k=—o00

Coefficients:

cr = d sinc (kd)




Sampling

Spectral relationships in natural sampling (Case 1)

X, (w)=4d Z sinc(kd) Xq (w — kws)

k=-—co
_ w
—Wmax | Winax
R TR~ Duty cycle:
e o d=di
== : : : : == W
We We Wy Qg

— ). — 1 Ly PR Ly
Ws T Wmax T s T Wmax Ws ™ Wmax s T max




Sampling

Spectral relationships in natural sampling (Case 2)

X, (w)=4d Z sinc(kd) Xg (w — kw;)

k_ ..... cx)
X, (w)
w
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» MATLAB Exercise 6.4
» MATLAB Exercise 6.6

Duty cycle:
d=ds > d;




Sampling

Zero-order hold sampling

. (1)

N\ A— Sample z, (t) at Ts second

\/ intervals, and hold the amplitude
) constant for the duration of the
2 1) pulse (dT's seconds).

In natural sampling the tops of the pulses are not flat but are rather shaped by the
signal xa (t). This behavior is not always desired, especially when the sampling
operation is to be followed by conversion of each pulse to digital format. An
alternative is to hold the amplitude of each pulse constant, equal to the value of the
signal at the left edge of the pulse. This is referred to as zero-order hold sampling.




Reconstruction

Often the purpose of sampling an analog signal is to store, process and/or transmit it
digitally, and to later convert it back to analog format.

To that end, one question still remains: How can the original analog signal be
reconstructed from its sampled version? Given the discrete-time signal x[n] or the
impulse-sampled signal xs (t), how can we obtain a signal identical, or at least
reasonably similar, to xa (t)? Obviously we need a way to i/l the gaps” between the
impulses of the signal xs (t) in some meaningful way.

In more technical terms, signal amplitudes between sampling instants need to be
computed by some form of interpolation.




Reconstruction

Reconstruction of a signal from its sampled version

Impulse sampling of a signal zq (%):

o]

zs(t) = ) @a(nTs) §(t —nTy)

n=— —oo

z(t), z(t)

t

Impulse sampling Ry N £
f/ \s,____..-" -
T ‘ [ ‘
4
’/
T, 2T, 3T, 4T, 5T, 6T, 7T, 8T, 9T, 10T,
rs{r‘}r -Tmh(t)
Reconstruction using -= o —_—
zero-order hold “'T__T__{"
T, 27T, 3T, AT, 5T, 6T, 7T, 8T, 9T, 10T,




Reconstruction

Reconstruction of a signal from its sampled version (continued)

Zero-order-hold interpolation filter:

t—TS/2)

haon (£) = II ( =

Is(t) — hmh(t) > Izuh(t)

4 (t) Zyon(t) |
lTHHIH”t (1) t
n. '
Xzon (w)zsinC(u;ZS) JwTs/2 i Xa (W — kws)




Reconstruction

Reconstruction of a signal from its sampled version (continued)

First-order hold interpolation:

-

zo(t), Teon(t) Straight line segments

Py {1
, f’ \\\
# LS
Fa - "
7’ o
,/
T, 2 3T, AT, 6T

—/\

/

/o

/

/

[

T | {
s 2T, 3T, s 5T

7T, 8T, 97T, 10T,

Iy {tJ E—— h‘foh(t) —— Ifoh(t)
xs(t) Zeon(t)




Reconstruction

Reconstruction of a signal from its sampled version (continued)

Ideal reconstructicon

Spectrum of impulse sampled signal:

Xo(f) =7 D Xalf—kfy

k=00

Ideal lowpass reconstruction filter:

we <)

The output of the ideal lowpass filter is

X ()= Hr () X (f) =TT (L) 2 37 Kalf —kFs) = Xa (1)

k— o0




Reconstruction

Reconstruction of a signal from its sampled version (continued)

X, (f)
/R
\ /\ /\ s 5
’ — /s — fmax Srax ‘ fs

__III.\' - _Jr'l':',\ _FI\ + _JI.'I'EL\ _’I.\' - _III.IIFI\ _f..\ + _III.III:L\




Reconstruction

Reconstruction of a signal from its sampled version (continued)

The impulse response of the ideal lowpass filter is

hy (t) = sinc (¢fs) = sinc (%) (1)

g

9 The output z, (¢) of the ideal lowpass reconstruction filter is equal to the
sampled signal at each sampling instant.

? In between sampling instants z (%) is obtained by interpolation through the use
of sinc functions. This is referred to as bandlimited interpolation.




Resampling Discrete-Time Signals

Reducing the sampling rate by an integer factor

Reduce the sampling rate by a factor of D:

zq4[n| = z[nD]

This operation is known as downsampling.

The parameter D is the downsampling rate.

zn] —— | D +—— z4[n]

@ The signal zq[n] retains one sample out of each set of D samples of the original
signal z[n].
@ For each sample retained, (D — 1) samples are discarded.




Resampling Discrete-Time Signals

Reducing the sampling rate by an integer factor (continued)

z1[n]

wm—mmmHrm—m, S0 2 eprre-

~10-8 =6 -4+ —2 | 2 4 6 s 10 12 14 6] JLEFT 26 08

To[n] = x1[2n]

rop- 1 ’{ W <‘ N T\T_T"T“‘m -‘
5 -‘ 2 3 4 5 6 7 87

3 -2 E TN U PPt g




Resampling Discrete-Time Signals

Reducing the sampling rate by an integer factor (continued)
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Resampling Discrete-Time Signals

Increasing the sampling rate by an integer factor

Let

zu[n] =

z[n/L], n==kL, k: integer
0, otherwise

This operation is known as upsampling.

The parameter L is the upsampling rate.

zn] ——| 1T L —— z,[n]

x[n]
Saal | ‘ ‘ ‘
-3 -2-1 0 1 2 3 4 5§
’ ’ ! 1 \ A e ST~
/ 1 N ~ s
‘ / f; I \\ N s RS
s ! i 1 \ AN >\ Sl Tl
/ ~ ~
s / J 1 3 \ ~ . -
i , i I I A\ N\ ~ “-\ ‘-._“_
zu[n] = z[n/2 7 S , 1 N b -
p ’ y ¥
n even ’ ¥ I
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Resampling Discrete-Time Signals

Increasing the sampling rate by an integer factor (continued)

A lowpass interpolation filter is needed to make the zero-amplitude samples
"blend-in" with the rest of the signal.

zy[n] Interpolation
filter

H,(Q)

zln] —> T L

—— T,[n]

Interpolator

AN

(rad)
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